13 research outputs found

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    Etude des proprietes d'un detecteur infrarouge H2RG pour l'optimisation d'un spectrographe embarque sur le satellite SNAP/JDEM

    No full text
    The SNAP (SuperNovae Acceleration Probe) mission is designed to measure very precisely the cosmological parameters and to determine the nature of the Dark energy. The mission is based on the measurement of some thousands supernovae up to a redshift of z=1.7 and on weak lensing measurements of more than one thousand square degrees of the sky. The SNAP experiment consists in a 2-meter telescope with a one square-degree imager and an integral eld spectrograph. We present in this thesis a study on hybride detector H2RG (produce by Teledyne) to improve performances of the SNAP spectrograph. The H2RG 40 detector was characterized and used in the spectrograph demonstrator. The way of sampling have been optimized to decrease the readout noise and detect cosmic ray. The impact on the spectrograph performances have been also evaluated.Le travail eectue pendant cette these s'inscrit dans le cadre de la mission SNAP (SuperNovae Acceleration Probe). Celle-ci se propose de determiner la nature de l'energie Noire par la combinaison de mesures d'un echantillon de supernovae lointaines de type Ia avec des mesures de cisaillement gravitationnel. Le satellite embarquera deux instruments : un imageur grand champ et un spectrographe d'une precision photometrique et spectroscopique jamais atteinte. L'objectif de cette these est d'etudier les proprietes des detecteurs infrarouges hybrides H2RG (produits par Teledyne) du spectrographe pour optimiser ses performances. Pour cela, le detecteur H2RG numero 40 a ete caracterise puis utilise dans un prototype de spectrographe. Le mode de traitement des donnees a egalement ete optimise pour diminuer le bruit de lecture et quantier l'impact du rayonnement cosmique. Ces aspects seront developpes dans cette these ainsi que leurs impacts sur les performances du spectrographe

    Etude des propriétés d'un détecteur infrarouge H2RG pour l'optimisation d'un spectrographe embarqué sur le satellite SNAP/JDEM

    No full text
    Le travail effectué pendant cette thÚse s'inscrit dans le cadre de la mission SNAP (SuperNovae Acceleration Probe). Celle-ci propose de déterminer la nature de l'énergie Noire par la combinaison de mesures d'un échantillon de supernovae lointaines de type Ia avec des mesures de cisaillement gravitationnel. Le satellite embarquera deux instruments : un imageur grand champ et un spectrographe d'une précision photométrique et spectroscopique jamais atteinte. L'objectif de cette thÚse est d'étudier les propriétés des détecteurs infrarouges hybrides H2RG (produit par Teledyne) du spectrographe pour optimiser ses performances. Pour cela, le détecteur H2RG numéro 40 a été caractérisé puis utilisé dans un prototype de spectrographe. Le mode de traitement des données a également été optimisé pour diminuer le bruit de lecture et détecter l'impact du rayonnement cosmique. Ces aspects seront développés dans cette thÚse ainsi que leurs impacts sur les perormances du spectrographeThe SNAP (SuperNovae Acceleration Probe) mission is designed to measure very precisely the cosmological parameters and to determine the nature of the Dark energy. The mission is based on the measurement of some thousands supernovae of type Ia up a redshift of z=1.7 and on weak gravitational lensing measurements of more than one thousand square degrees of the sky. The SNAP experiment consists in a 2-meter telescope with a one square-degree imager and an integral field spectrograph. We present in this thesis study on hybrid detector H2RG (produce by Teledyne) to improve performances of the SNAP spectrograph. The H2RG 40 detector was characterized and used in the spectrograph demonstrator. The way of sampling has been optimized to decrease the readnoise and detect cosmic ray and the impact on the spectrograph performances have been evaluatedAIX-MARSEILLE2-BU Sci.Luminy (130552106) / SudocSudocFranceF

    Random telegraph signal (RTS) in the Euclid IR H2RGs

    No full text
    International audienceEuclid is an ESA mission to map the geometry of the dark Universe with a planned launch date in 2021. Euclid is optimised for two primary cosmological probes, weak gravitational lensing and baryonic acoustic oscillations. They are implemented through two science instruments on-board Euclid, a visible imager (VIS) and a near-infrared photometer/spectrometer (NISP), which are being developed and built by the Euclid Consortium instrument development teams. The NISP instrument contains a large focal plane assembly of 16 Teledyne HgCdTe H2RG detectors with 2.3 ÎŒm cut-off wavelength and SIDECAR readout electronics. The performance of the detector systems is critical for the science return of the mission and extended on-ground tests are being performed for characterisation and calibration purposes. Special attention is given also to effects even on the scale of individual pixels, which are difficult to model and calibrate, and to identify any possible impact on science performance. This paper discusses the known effect of random telegraph signal (RTS) in a follow-on study of test results from the Euclid NISP detector system demonstrator model [1], addressing open issues and focusing on an in-depth analysis of the RTS behaviour over the pixel population on the studied Euclid H2RGs

    Euclid H2RG detectors: Impact of crosshatch patterns on photometric and centroid errors

    No full text
    International audienceIn the framework of the ESA’s Science programme, the Euclid mission has the objective to map the geometry of the Dark Universe. For the Near Infrared Spectrometer and Photometer instrument (NISP), the state-of-the-art HAWAII-2RG detectors will be used, in association with the SIDECAR ASIC readout electronics. A dedicated test bench has been designed, developed and validated at ESTEC to perform tests on these detectors. This test bench is equipped with a spot projector system as well as a set of LEDs allowing to project the Euclid like beam and perform persistence measurements. The detector under test shows crosshatch patterns that may correspond to sub-pixel variations in Quantum Efficiency or charge redistribution. The goal of the tests was to evaluate the impact of crosshatches patterns on the Euclid photometric performance and centroid calculation after flat fielding correction. The second part of the publication discusses different persistence mitigation tests using the LEDs test set up

    Comparison of persistence in spot versus flat field illumination and single pixel response on a Euclid HAWAII-2RG at ESTEC

    No full text
    International audienceEuclid is an ESA mission to map the geometry of the dark Universe with a planned launch date in 2020. Euclid is optimised for two primary cosmological probes, weak gravitational lensing and galaxy clustering. They are implemented through two science instruments on-board Euclid, a visible imager (VIS) and a near-infrared spectro-photometer (NISP), which are being developed and built by the Euclid Consortium instrument development teams. The NISP instrument contains a large focal plane assembly of 16 Teledyne HgCdTe HAWAII-2RG detectors with 2.3ÎŒm cut-off wavelength and SIDECAR readout electronics. While most Euclid NISP detector system on-ground tests involve flat-field illumination, some performance tests require point-like sources to be projected onto the detector. For this purpose a dedicated test bench has been developed by ESA at ESTEC including a spot projector capable of generating a Euclid-like PSF. This paper describes the test setup and results from two characterisation tests involving the spot projector. One performance parameter to be addressed by Euclid is image (charge) persistence resulting from previous exposures in the science acquisition sequence. To correlate results from standard on-ground persistence tests from flat-field illumination to realistic scenes, the persistence effect from spot illumination has been evaluated and compared to the flat-field. Another important aspect is the photometric impact of intra-pixel response variations. Preliminary results of this measurement on a single pixel are presented
    corecore